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Abstract—Using Donnell-type shell theory a simple and exact procedure is presented for linear
buckling analysis of orthotropic conical shells under axial compressive loads and external pressure.
The solution is in the form of a power series in terms of a particularly convenient coordinate system.
By analyzing the buckling of a series of conical shells, under various boundary conditions and
different material cocflicients, the validity of the presented procedure is confirmed.

I. INTRODUCTION

Due to their extensive use, particularly in the aeronautical industry, the buckling of conical
shells has been studied by many researchers. Much litcrature exists on the buckling of
isotropic conical shells under compressive axial loads in Seide (1956, 1961), Lackman and
Renzien (1960), Singer (1961, 1965), Weigarten et al. (1965a, b), Baruch et al. (1970) and
Tani and Yamaki (1970) and under external pressure in Singer (1961, 1966) and Baruch
and Singer (1965) as well as combined loading in Weigarten ¢t al. (1965). A simple formula
was developed for the buckling of isotropic conical shells by Seide (1956) and later verified
by Lackman and Renzien (1960). Seide’s formula is independent of boundary conditions
and is best used for long shells. Using complex series Singer (1966) and Baruch and Singer
(1963) proposed a procedure for solving the three equilibrium equations and two out-
of-plane boundary conditions are satisfied identically while the out-of-plane equilibrium
equation and in-plane boundary conditions are satisfied approximately. Subsequently,
Baruch et «l. (1970) improved Singer’s solution by satisfying the in-plane boundary con-
ditions exactly. Nevertheless the overall solution remained complicated. To our knowledge
there has not been a simple solution for buckling analysis of isotropic conical shells under
axial loads and external pressure. For orthotropic shells there have been fewer studies. By
using the displacement strain relations in Seide (1957), Singer (1962, 1963) derived a set of
equations for the buckling of orthotropic conical shells. Following the procedure in Singer
(1965), Baruch and Singer (1965) obtained solutions for the buckling of orthotropic conical
shells. Baruch's procedure may be used to analyze stiffened conical shells by smearing the
stiffeners to find equivalent orthotropic shells. Since this procedure is an extension of the
analysis for isotropic shells, it suffers from the same shortcomings mentioned earlier.

In the following we develop a simple and exact procedure for buckling analysis of
isotropic and orthotropic conical shells under axial compression and external pressure. The
procedure consists of the following steps:

o the buckling equations are developed and expressed in terms of displacements ;

e using a new technique, exact solutions are constructed in series form for the govern-
ing equations ;

e convergence properties of the series solution are determined.

By way of verification, several examples are analyzed and the effects of boundary
conditions and elastic coefficients on the buckling loads are investigated.

933
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2. DONNELL-TYPE GOVERNING EQUATIONS

Consider a conical shell as shown in Fig. [, R, and R; indicate the radii of the cone at
its small and large ends, respectively, x denotes the semi-vertex angle of the cone and L is
the cone length along its generator. We now introduce the x-¢ coordinate system; x is
measured along the cone’s generator starting at the middle length and ¢ is the cir-
cumferential coordinate. The displacements of the shell’s middle surface are denoted by U
and V" along x and ¢ directions respectively, and by W along the normal to the surface
(inward positive). In terms of these variables the cone’s radius at any point along its length
may be expressed as

R(x) = Ry+xsina. (H

Now let the cone be subjected to an axially compressive load P and an external normal
pressure g. Under this loading the membrane stress resultants, at the critical state, may be
expressed as

P+qn(2Ry+ xsin 2)x sin «

N =
x0 2nR(x) cos a
. _4qR(K)
‘N = . 2
*0 coSs 2 ( )
Rg

Fig. . Geometry and notations for a typical cone.
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These equations, based on the membrane theory of shallow shells, degenerate to their more
familiar forms for cylindrical shells when x is set equal to zero.

For linear buckling analysis of orthotropic conical shells, under P and q loadings, we
adopt the shallow shell theory of Donnell-type and write the governing equations derived
in Tong (1988) as

L||(/'+L|:V+L|3W=0
L2|U+L:2V+L23W=O

L)|U+L]:V+'L33W+LNW=O (3)

where

¢! A, sina @ Aisinfa Ag 0°
Lu=diga+ R &~ R TR@ W
L _(AIZ+A66) 82 (A:;+A6(,)Sinai
BT R()  éxde R*(x) o¢
L (A2 +A4q) ¢° (Ass+Age)sina 0
0= —

Ry &xéd " Rix) 29

foq @ sinza sina] 4n &
BT T R(x)0x R Rx) é¢°

A.cosa ¢ Aysinacosa

b= = iy & TR
Lyy=L,, = ﬁzfis_z 9
= o R(x) d¢
L, = _A.zcosa _3__/122 sir:zcosa
R(x) ox R*(x)
2 4 4 4
R R NI 1
N 2D, sina i’_ _2(D11+2Dyy)sina Ik _ Dy sinla iz_
R(x) éx° R3(x) Ox d¢? Ri(x) oax*
2(Dyy4+ D,3+2D¢g)sina 8 Dyysinda
R0 3T TR ox
Ly =25 (%[R(x)zv,o:—x} e a%(mo %) @

and A4, and D;; (i, j = 1, 2, 6) are calculated from the following equations :

Eh Hy Eh Esh E.h
A, = l—-' A= 6—“’ Ay = m_, A= -—¢—, Age = Gmh
— Hohoc U= Heotgr 1 — UeoHos I —Hegtyn
E.R ,E,h’
D“ = 7___.—. Dlz = _#;‘.__
1201 = peo o) 12(1 — pgut0)
U E h® E,h’ G h’
DZI =_-,-¢°—. D:z=—o—"v 66 = <2 (5)
I-(I _l“xél“ax) lz(l _l“él‘éx) l2

in which E,, Ey, p.4. Uy, and G, are material elastic constants; 4 is the wall thickness and

Bwls = py E..
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The force and moment stress resultants are expressed in terms of the displacements U,
V and W by

[ N -[n li, 111_
Cw ;ZI j:: 1(")1 U
J Nyo - 31 32 v (6)
M, 0 0 W
1‘[“, O [6\
\A[»sz L 0 0 [h]_
where
4 A'w i Sy Sy
Lo, lpAnsnz Ay @ Apcosa
Cx R(x) R(x) 0¢ R(x)
Ay € ¢ sina
Lo o= 0 L = o2
TR 0 ha "‘“‘(m R(x))
&  D,sina ¢ D, ¢ Dy ¢ 1 ¢
//3 = _D]l a2 BN -‘" T pI N Ag2e [6} = - _“f{_ 3.V 7N A% (7)
Oox R(x) dx R-(x) ¢ R(x) dx| R(x) d¢p

wherei=1,2and j = 3+
The transverse shear foree resultants can be obtained from M, M, and M, by

3, M, sin 2 1 oM,
), = o — ROM 1= 82 = 00T
Q= Rew ax ROMI= =057+ R a9
J : M, sina I oM,
= e = R e e i
Qs R(%) ax[ (M ]+ R(Y) + R 9 (8)
The related boundary conditions may be expressed as
N, = or U=0
Ne=0 or V=0
cW L
M, = or i 0 when x=+ 5
Q.=0 or W=0. 9

For simplicity, let us first consider the following two types of boundary conditions in
detail :

Case | : Simply-supported boundary conditions at x = + L/2.
There exist four subclasses of simply-supported conditions. These are denoted as
follows:

SS;: Nyp=N,=M,=W=0
SS;: Ny=U=M,=W=0

SS,: V=N,=M,=W=0
§S,: V=U=M,=W=0. (10)
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Case 2: Clamped boundary conditions at x = 4 L/2.
The four subclasses in this case are:

‘W
CCi: Ny=N,= A =W=0
CC.: N U—EW—W—O
2 No=Us=g-=Ws=
cw
CCy: V=N=—=W=0
ox
CC,: V= ki w=0 11
.t =U=--= =0. an

The above set of governing equations degenerate to those of cylindrical shells when « is set
equal to zero. It is also worth noting that if the starting point of the x-axis is changed to
the cone’s vertex, where the radius is equal to zero, the x—¢ coordinate system will coincide
with the s-¢ coordinate system used by many previous researchers. A further point of
interest is the case when a, the semi-vertex angle, approaches a right angle. In this case, the
differential operators L5, L,;. Ly, and Lj;; approach zero and the three equilibrium
equations become independent, that is, the first two equations will then describe the in-
plane problem and the third the buckling problem of circular plates under axially symmetric
in-plane loading.

Evidently the system of governing equations presented in the foregoing is complex and
to our knowledge exact solutions have not been given for these equations. In the following
section we outline a strategy for constructing general solutions for these equations.

3. EXACT SOLUTIONS

An inspection of the differential operators L ; (7, j = 1,2,3) and Ly in egns (4) reveals
the following propertics :

The coefficients of all these operators are functions of x only, i.e. they are independent
of ¢, and they include terms of the following form: 1/R*(x), k=0, 1,2,3,4. For the
operators L, ; (i = 1,2; j = 1,2,3), k takes values from zero to two. For Ly; (j = 1,2, 3) the
value of k ranges from zero to four. These useful properties allow us to change the equations
into a more convenient form. Multiplying the first two equations of (3) by R*(x) and the
third by R*(x) we obtain the following modified equations:

WU+LHhV+LL,W =0
WUHLLV+ LW =0

LYWW+ LS,V L5Z\WH LW =0 (12)
where
d? ) i) ., o?
LY = A, R? (v) 2+A,,R(x)smozé;—Ansm a+A°°6¢2

5

.0
a a¢ (A22+A66)Slna—

LY = (A12+ Age)R(x) 5 3¢

-

15} 5]
T "(AI’+A66)R(‘) ¢+(A1~+A6(,)smaa¢
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83 é d°
L% = A M[R (x) E —sin* “:|+Azza¢z
. ¢ .
LY = _A”R(.wc)cosaza—Y + A,, sin 2 COs
L% = —A cosai
23 = 22 (j(b
* N ¢ 1
LY = —R'(.\:)[AHR(,\')cosazc_,—Y — A, sin 2 cos a
LY, = -4 Rz(r)cosazfi
32 22 - 8¢

A4 4 o4

( 9
L%, =D, R*(x) A +2(D,2+ZD“)R‘(.V)W +DzzaTJ4

3 3

0
+2D, R*(x)sin 1 — —-7(D.a+ZD(,6)R(x) sin & ——=—

ox 0¢*
03 a2
=D RA(x)sin a o5 +2(D 3+ D23+ 2Dyg) sin” a —
Ox* do*
('1
+ D5, R(x)sin « - +A4,. R (x)cos?a
[PAY
* vy © ) d J
LY = Rx) o | RCN 5+ |+R? (v) 56 \Neogs ) (13)
Now let us assume solutions for eqns (12), of the following form:
U=u(x)cosnp, V=urv(x)sinnp, W = w(x)cosng (14)
where
u(x) = Y a.x", v(x)= Y b,x", w(x)= ) c,x" (15)
m=0 mm Q) me0

and n is an integer representing the circumferential wave number of the buckled shell; a,,,
b,, and ¢,, are constants to be determined later.

On substituting from eqns (14) and (15) into eqn (12) and using eqns (1) and (13) we
develop three lincar algebraic equations by matching the terms of same order in x, and in
addition we obtain the following recurrence relations:

Uiy = Gy + G120, + G 30y | + G 30+ Gy 5Cme 1 TG 6Cm
Boer =Gty 1 +Ga220,+Ga3b,  + G by +GosCp
Cnsg = G}.lam+ 1 +GJ.2am +Gl.3am~— t + G}_-lam— 2 +GJ.5bm+GJ,6bm— 1 +G$.7bm— 2 +GJ.5CM+ 3

+G39Cme 1+ G300Cme 1 F G311+ G1126m-1 +G343Cm- 2+ G 14Cm-3 (M =0,1,2,..)
(16)

where the coefficients G, [(i, j) = (1, 6), (2.5). and (3, 14)] are given in the Appendix. The
above recurrence relations allow one to express the unknown constants a,,, b, (m = 2) and
¢, (m = 4) in terms of aq, a,, by, b,, ¢q, ¢\, c; and c;. Therefore the general form of u(x),
r(x) and w(x) may be written as
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u(x) = u(x)ag+us(x)a, +u;(x)by + s ()b, + us(x)co+ ug(x)c, + u7(x)c2+ ug(x)cs
v(x) = v, (xX)ag+r.(x)a, +ri(x)bg + ()b, +r5(xX)co+re(x)c, +7(xX)c, +ry(x)cs
w(x) = wi(x)ag+w(x)a, + w3 ()b +wi(x)b +ws(x)co+ we(x)c +wr(x)cr+wy(x)ey

(7

in which «;(x), r;(x) and w,(x) (i = 1,2.....8) are the base functions of u(x). r(x) and w(x),
respectively, and a,. a,, by. b\, ¢y. ¢\, ¢: and c; are the unknowns to be determined by
imposing the boundary conditions at both ends of the cone.

Before going into details of the solution procedure, let us consider the convergence
property of the series solutions u(x). v(x) and w(x) defined in eqns (15) and the cor-
responding recurrence eqns (16).

Careful analysis of the recurrence eqns (16) and the coefficients G,; given in the
Appendix shows that :

o The power series defined in eqns (15) and (16) are alternating series, i.e. the terms
of the series change sign consecutively. This property can readily be verified through
numerical calculations.

e When m becomes large enough, the recurrence eqns (16) can be written approxi-
mately as follows:

. - 9
2sina sin” &
Upyy = — 2 lp | = 55y
R() 0
2sina sin® a
bnir= — == by = - R b
R, o
: o2 o} o d
4sina 6sin- « 4sin” o sin” & (18)
Cm+~l —;‘ - —.—Clﬂf}— —-———'2——. ‘,'"‘+Z— _'—v_]’—_("m? l - *—i—-cm'
Ry R; Ry Ry

These approximate recurrence equations indicate that the coefficients a,, b,, and c,,
are predominantly dependent on the former terms a;, b, (i=0,1) and ¢, (i =0,1,2,3),
respectively, when m is large enough.

Assuming the convergence ratio of u(x), v(x) and w(x) to be p,, p, and p_, respectively,
ie.

. . bm . m
po = lim &L p, = lim b“, p. = hm% (19)

and noting the elementary character of the alternant series, eqns (18) can be changed into
the following form:

»_ 2sina sin® a
pu - Ro Pa R(:)

, 2sina sin® «
ph - Ro P.s Ré
4sina 6sin’ « 4sin’ « sin* a
4 3 2
P = Pc— (20)

Ro R(Z) pc+ Rg pr_ R(.;

It is now easy to verify, by simple manipulations, that p, and p, have the following
identical real roots
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, sin x 21
Pa=pr=p=—7- 2
i RU

and p, has a single real root

sin x
p.o=p= R (22)
{4

therefore, the series u(x). r(x) and w(x) obtained in the previous part have identical
convergence radius 7. i.e.

, - IRy 3
CT o sinx 9
Noting that
R +R;
Ry = —L; =t 29)

the convergence radius for the three series becomes

_R+R,
T 2sina

(25)

¢

That is, as long as v is within the circle of radius r,, convergence will be assured. For the
shells considered here, the maximum value of |x] is L;/2. Thus for our purposcs, the condition
for convergence is

id < R, j}—RJ’ 26)
2 7 2sinz
The convergence condition (26) can be rewritien as

Lsinx < R+ R, (27}
or

R.— Ry < R/ +R.. (28)

This may finally be written as
R, =20 2%

Henee the three constructed series will converge to their corresponding solutions if the
small radius is not zero, t.e. if the conical shell is a truncated one. A complete cone is treated
as a truncated cone with a very small radius at its apex. Thus for all practical purposes,
there are no limitations on the geometric parameters of the shell considered. Accordingly,
the solution obtained provides exact solutions for the three displacements U, V and W for
the buckling of cones under axial compressive loads and external pressure. The three
displacements U, ¥ and ¥ may be used to calculate the stress resultants N, N, and N,
and the bending moments M. M, and M, through eqns (6) and (7). and furthermore the
transverse shear forces @, and @, may be obtained from egns (8). This solution is exact
because is satisfies the governing equations rigorously and it also satisfies the eight boundary
conditions through eight arbitrary constants.
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The critical buckling loads and the corresporiding buckling mode shapes can finally be
obtained by equating the determinants of the coefficients matrix obtained after imposing
the eight boundary conditions to zero.

4. NUMERICAL RESULTS AND DISCUSSIONS

4.1. Solution procedure
Since the solution procedure is applicable to all types of boundary conditions, a simple
program. EXACTI, has been developed. The program includes the following steps:

o [nput geometrical and material parameters and related coefficients;

e Calculate U. V, W, ¢W/ix, N, Ny. Q. and M, for a fixed value of the critical
buckling load ;

o I[ntroduce the boundary conditions and compute the determinant for specific bound-
ary condition ;

e Check for convergence.

In the programme, the buckling loads for axisymmetrical cases may be calculated
directly by setting the circumferential wavenumber to zero. The buckling loads for asym-
metrical cases may be obtained by minimizing the loads with respect to the circumferential
wavenumber.

4.2. Numerical resudts for isotropic cones

In this section numerical results are presented for the buckling of isotropic conical
shells under axial compression with different parameters and under different boundary
conditions. Before presenting the results, let us introduce the following notation:

P = (30)

where P, is the critical buckling load obtained from the present method, and P, is the
classical value of the critical buckling load

3 2nEh? cos? «

= — == €2

P.
VT

suggested by Scide (1956).

The present values P, and their comparison with those in Baruch et al. (1970) are
shown for isotropic cones with different values of L/R,, semi-vertex angles « and different
boundary conditions, i.e. SS, and SS; in Table 1, SS, in Table 2, SS, in Table 3 and CC,
and CC, in Table 4. Good agreement for p. can be observed between the present results
and those from Baruch er al. (1970). There is however a difference in the circumferential
wavenumber. It can be seen that p,, tends to 0.5 for SS,, SS, and SS; and to 1.0 for SS,,
CC, and CC,. This means that there exists a lower critical value for SS,, SS, and SS; and

Table 1. Critical load ratio p,, for 8S, and SS, boundary conditions
(R/h = 1000 g =0.3)

LiR, 0.2 0.2 0.5 0.5
2 present Baruch (1970) present Baruch (1970)
1” 0.5032 0.4991 0.5131 0.5131
5 0.5057 0.5021 0.5142 0.5139
N 0.5106 0.5075 0.5151 0.5147
20° 0.5280 / 0.5163 /
30’ 0.5616 0.5567 0.5140 0.5139
45° 0.6491 / 0.4947 /
60" 0.8715 0.8701 0.4486 0.4486

70” 1.2346 / 0.4304 /
80" 23832 2.3830 0.5405 0.5407
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Table 2. Critical load ratio p, for SS. boundary condition
(Ri/Ah=100.0 u=03)

L/R, 0.2 0.2 0.5 0.5

x present Baruch (1970) present Baruch (1970)

I 0.5081 (1) 0.5106 (2) 0.5147 (1) 0.5191 (2)

5 0.5098 (1) 0.5133 (2) 0.5153 (1) 0.5196 (2)
10° 0.5102 (1) 0.5184 (2) 0.5163 (1) 0.5203 (2)
20° 0.5284 (1) 0.5179 (1) {
30° 0.5604 (1) 0.5696 (2) 0.5166 (D) 0.5203 ()

45° 0.6534 (1) / 0.4992 (D) /
60° 0.8759 (1) 0.8924 () 0.4596 (1) 0.4652 (2)
70" 1.2428 (1) 1 0.4423 (1)

80°  2.3997 (1) 2.4470 (2) 0.5572 (1) 0.5984 (2)

Table 3. Critical load ratio p,, for $S§, boundary condition
(Ri/h=1000 p=03)

L/R, 0.2 0.2 0.5 0.5
2 present Baruch (1970) present Baruch (1970)
r° 1.0051 (1) 1.005 (D 1.0020 (8) 1.002 (8)
5’ 1.0057 () 1.006 (7) 1.0018 (8) 1.002 (8)
10° 1.0071 (7) 1.007 (7) 1.0012 (8) 1.002 (8)
20° 1.0097 (6) / 1.0000 (8) /
30 LOL71 (5) 1017 (5 1.0006 (7) 1.001 (T)
45 1.0415 (2) / L.OLIO (5) ;
60" 1.1443 (0) 1.144 (0) 1.0032 (5) 1.0 (T)
70" 1.4207 (0) / 1.0150 (5) /
80" 24774 (0) 2.477 () Lot (3) 1.015(5)

Table 4. Critical load ratio p,, by present method

L/R, 0.2 0.5 0.2 0.5
x cc, cc, cc, cC,
I 1.664 (0)  1.004 (8) / 1053 (8)
50 L678(0) L.007(8) 1.687 (0) 1.054 (8)

10° 1.708 (0)  1.006 (8) 1.709 (0) 1.064 (8)
307 1.945(0) 1.002(7) 1.947(0) 1.099(8)
45° 2.372(0) 0999 (5) 2375(0) 1.029 (0)
60° 3.320(0) 1.001 (2) 3.328 (0) 1.015(0)

Pcr

v=03

200y Avh = 1.00

175 F

100
a = 45°

0.75 | /

0.50
a=30°
0.25

0.00 " L " . N L/Rs
0.1 0.2 03 0.4 05 0.6 07 08

Fig. 2. Influence of L/R, on ratio p, for SS,.
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Per
250

v=0J3

225L  R/h=1.00

2000

1751

LR =02
1.50 >~

1250

100 —>>

0sop—>>

025 L 1 L 1 F IS T § L [+
o* 10° 20° 30° 40° S0° 60 70°  @0°

Fig. 3. Influence of « on ratio p,, for SS;.

Seide’s formula is only applicable to SS,, CC, and CC;. For extremely short cones with
L/R, = 0.2, p., becomes larger as a increases ; and p,, tends to a constant independent of «
for cones with L/R, larger than 0.5. These properties are shown in Fig. 2 for SS, and
Fig. 3 for SS; and SS,. Another important phenomenon worth noting is that the buckling
wavenumber tends to decrease as a increases.

All calculations show that only 20 terms of the series (14) are sufficient for accurate
value of p,.. Further calculations using 15 terms show little difference in the results obtained.

4.3. Numerical results for orthotropic cones

For orthotropic cones, we compute p,, from eqn (31) with u replaced by u., and E
replaced by E,.

Numerical results for orthotropic cones with SS; are shown in Fig. 4, from which the
influence of L/R, on p,, for cones with E,/E, = 10.0 may be noted. it can be seen that p,,
is independent of L/R, when L/R, is larger than 1.0, and also p,, first decreases and then
increases as L/R, increases from 0.2 to 1.0. This curve possesses the same variation as that
shown in Fig. 2.

045 _Per
0s0| Ex/Ed= 10
0.35 vx$=03
1

0.30 | Gx¢/Ed= 2 (1+vee)

o= 30°
0.25 F

Rivh = 100
020]
[ALYN —
0.10 L 1 i — i b /R,

0.2 04 0.6 08 1.0 1.2 14 1.6 1.8 20

Fig. 4. Influence of L/R, on ratio p,, for SS;.
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P
35 ST
vx$=03 -
30F  Gro/Ed= 172 (1evi) 2
R/h=100 e
25l LR =10
a=10°
a=30°
a = 457
0 L i 1
1.0 10. 20. 30. 4. Ex/Eo,

Fig. 5. Influence of Ex/E, on ratio p,, for SS,.

Figure 5 shows the effect of E./E, on p,, for orthotropic cones with parameters given
in the figure. It can be observed that p,, increases as E,/E, becomes large, and it approaches
aconstant when E,/E, is large enough. Also of interest to note is that the semi-vertex angle
2 has a shight effect on p,,, and there exists only a slight difference among p, for 2 = 10,
30 and 45

5. CONCLUSIONS

The salient points in this study include: (1) Derivation of a systematic solution pro-
cedure for buckling analysis of isotropic and orthotropic conical shells under axial com-
pression and external pressure, using the power series method; (2) The solutions are
applicable to all types of boundary conditions and to various kinds of truncated conical
shells; (3) The effects of semi-vertex angle and material constants on the buckling loads are
identified.
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